ck90
contestada

Please could you find the answers to the questions in the attachment.
Could you make it clear as to which question you are providing the answer for and show full working out.

Thanks

27 points are available for correct answers.

Thank you very much

Please answer ASAP.

Also could you write out the question and write the answer underneath so it is clear, thanks.

Please could you find the answers to the questions in the attachment Could you make it clear as to which question you are providing the answer for and show full class=

Respuesta :

([tex] \frac{x1+x2}{2} , \frac{y1+y2}{2} [/tex])we need 3 equations
1. midpoint equation which is  ([tex] \frac{x1+x2}{2} , \frac{y1+y2}{2} [/tex]) when you have 2 points

2. distance formula which is D= [tex] \sqrt{(x2-x1)^{2}+(y2-y1)^{2}} [/tex]

3. area of trapezoid formula whhic is (b1+b2) times 1/2 times height


so

x is midpoint of B and C
B=11,10
c=19,6
x1=11
y1=10
x2=19
y2=6
midpoint=([tex] \frac{11+19}{2} , \frac{10+6}{2} [/tex])
midpoint=([tex] \frac{30}{2} , \frac{16}{2} [/tex])
midpoint= (15,8)

point x=(15,8)



y is midpoint of A and D
A=5,8
D=21,0
x1=5
y1=8
x2=21
y2=0
midpoint=([tex] \frac{5+21}{2} , \frac{8+0}{2} [/tex])
midpoint=([tex] \frac{26}{2} , \frac{8}{2} [/tex])
midpoint=(13,4)

Y=(13,4)



legnths of BC and XY
B=(11,10)
C=(19,6)
x1=11
y1=10
x2=19
y2=6
D= [tex] \sqrt{(19-11)^{2}+(6-10)^{2}} [/tex]
D= [tex] \sqrt{(8)^{2}+(-4)^{2}} [/tex]
D= [tex] \sqrt{64+16} [/tex]
D= [tex] \sqrt{80} [/tex]
D= [tex] 4 \sqrt{5} [/tex]
BC=[tex] 4 \sqrt{5} [/tex]





X=15,8
Y=(13,4)
x1=15
y1=8
x2=13
y2=4
D= [tex] \sqrt{(13-15)^{2}+(4-8)^{2}} [/tex]
D= [tex] \sqrt{(-2)^{2}+(-4)^{2}} [/tex]
D= [tex] \sqrt{4+16} [/tex]
D= [tex] \sqrt{20} [/tex]
D= [tex] 2 \sqrt{5} [/tex]
XY=[tex] 2 \sqrt{5} [/tex]


the thingummy is a trapezoid
we need to find AD and BC and XY
we already know that BC=[tex] 4 \sqrt{5} [/tex] and XY=[tex] 2 \sqrt{5} [/tex]

AD distance
A=5,8
D=21,0
x1=5
y1=8
x2=21
y2=0
D= [tex] \sqrt{(21-5)^{2}+(0-8)^{2}} [/tex]
D= [tex] \sqrt{(16)^{2}+(-8)^{2}} [/tex]
D= [tex] \sqrt{256+64} [/tex]
D= [tex] \sqrt{320} [/tex]
D= [tex] 4 \sqrt{2} [/tex]
AD=[tex] 4 \sqrt{2} [/tex]


so we have
AD=[tex] 4 \sqrt{2} [/tex]
BC=[tex] 4 \sqrt{5} [/tex] 
XY=[tex] 2 \sqrt{5} [/tex]

AD and BC are base1 and base 2
XY=height
so
(b1+b2) times 1/2 times height
([tex] 4 \sqrt{2}+4 \sqrt{5} [/tex]) times 1/2 times [tex] 2 \sqrt{5} [/tex] =
([tex] 4 \sqrt{2}+4 \sqrt{5} [/tex]) times \sqrt{5} [/tex] =
[tex] 4 \sqrt{10}+4*5 [/tex]=[tex] 4 \sqrt{10}+20 [/tex]=80 [tex] \sqrt{10} [/tex]=252.982


























X=(15,8)
Y=(13,4)
BC=[tex] 4 \sqrt{5} [/tex]
XY=[tex] 2 \sqrt{5} [/tex]
Area=80 [tex] \sqrt{10} [/tex] square unit or 252.982 square units