Respuesta :

[tex]x^2 - 5x - 14=\\ x^2+2x-7x-14=\\ x(x+2)-7(x+2)=\\ (x-7)(x+2)[/tex]

Answer:

The factors are [tex](x-7)[/tex]  and  [tex](x+2)[/tex]

Step-by-step explanation:

we have

[tex]x^{2} -5x-14[/tex]

To find the factors equate the equation to zero

[tex]x^{2} -5x-14=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]x^{2} -5x=14[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]x^{2} -5x+6.25=14+6.25[/tex]

[tex]x^{2} -5x+6.25=20.25[/tex]

Rewrite as perfect squares

[tex](x-2.5)^{2}=20.25[/tex]

[tex](x-2.5)=(+/-)\sqrt{20.25}[/tex]

[tex](x-2.5)=(+/-)4.5[/tex]

[tex]x=2.5(+/-)4.5[/tex]

[tex]x=2.5+4.5=7[/tex]

[tex]x=2.5-4.5=-2[/tex]

therefore

[tex]x^{2} -5x-14=(x-7)(x+2)[/tex]

using a graphing tool see the attached figure

The factors of the quadratic equation are the x-intercepts (values of x when the value of the function is equal to zero)

Ver imagen calculista