Respuesta :
It is a bit tedious to write 6 equations, but it is a straightforward process to substitute the given point values into the form provided.
For segment ab. (x1, y1) = (1, 1); (x2, y2) = (3, 4).
... x = 1 + t(3-1)
... y = 1 + t(4-1)
ab = {x=1+2t, y=1+3t}
For segment bc. (x1, y1) = (3, 4); (x2, y2) = (1, 7).
... x = 3 + t(1-3)
... y = 4 + t(7-4)
bc = {x=3-2t, y=4+3t}
For segment ca. (x1, y1) = (1, 7); (x2, y2) = (1, 1).
... x = 1 + t(1-1)
... y = 7 + t(1-7)
ca = {x=1, y=7-6t}
The parametrization is:
From [tex]a[/tex] to [tex]b: x=1+2t[/tex] and [tex]y=1+3t[/tex].
From [tex]b[/tex] to [tex]c: x=3-2t[/tex] and [tex]y=4+3t[/tex].
From [tex]a[/tex] to [tex]c: x=1[/tex] and [tex]y=1+6t[/tex].
The parametric equations are , [tex]x=x_1+(x_2-x_1)t, y=y_1+(y_2-y_1)t,[/tex] where [tex]0\leq t\leq 1[/tex].
[tex]a(1,1), b(3,4), c(1,7)[/tex]
[tex]a[/tex] to [tex]b: (x_1, y_1)=(1,1)[/tex] and [tex](x_2, y_2)=(3,4)[/tex]
So, [tex]x=1+(3-1)t[/tex] and [tex]y=1+(4-1)t[/tex]
So, [tex]x=1+2t[/tex] and [tex]y=1+3t,[/tex] where [tex]0\leq t\leq 1.[/tex]
[tex]b[/tex] to [tex]c: (x_1, y_1)=(3,4)[/tex] and [tex](x_2, y_2)=(1,7)[/tex]
So, [tex]x=3+(1-3)t[/tex] and [tex]y=4+(7-4)t[/tex]
So, [tex]x=3-2t[/tex] and [tex]y=4+3t[/tex], where [tex]0\leq t\leq 1[/tex].
[tex]a[/tex] to [tex]c: (x_1, y_1)=(1,1)[/tex] and [tex](x_2, y_2)=(1,7)[/tex]
So, [tex]x=1+(1-1)t[/tex] and [tex]y=1+(7-1)t[/tex]
So, [tex]x=1[/tex] and [tex]y=1+6t[/tex], where [tex]0\leq t\leq 1[/tex].
Learn more about parametric equations here:
https://brainly.com/question/10674983?referrer=searchResults