Rex, Paulo, and Ben are standing on shore watching for dolphins. Paulo sees one surface directly in front of him about a hundred feet away. Use the spaces provided below to prove that the square of the distance between rex and Ben and the dolphin, and Ben and the dolphin.

URGENT !! I NEED TO PASS THIS TO GRADUATE !!

Rex Paulo and Ben are standing on shore watching for dolphins Paulo sees one surface directly in front of him about a hundred feet away Use the spaces provided class=
Rex Paulo and Ben are standing on shore watching for dolphins Paulo sees one surface directly in front of him about a hundred feet away Use the spaces provided class=

Respuesta :

frika

1. [tex] m\angle BAC=m\angle CAD,\ m\angle ACB=m\angle ADC=90^{\circ} [/tex], then [tex] m\angle ABC=m\angle ACD [/tex] and triangles ADC and ACB are similar by AAA theorem.


2. The ratio of the corresponding sides of similar triangles is constant, so


[tex] \dfrac{AC}{AB}= \dfrac{AD}{AC} [/tex].


3. Knowing lengths you could state that [tex] \dfrac{b}{c}= \dfrac{e}{b} [/tex].


4. This ratio is equivalent to [tex] b^2=ce [/tex].


5. [tex] m\angle ABC=m\angle CBD,\ m\angle ACB=m\angle CDB=90^{\circ} [/tex], then [tex] m\angle BAC=m\angle BCD [/tex] and triangles BDC and BCA are similar by AAA theorem.


6. The ratio of the corresponding sides of similar triangles is constant, so


[tex] \dfrac{BC}{BD}= \dfrac{AB}{BC} [/tex].


7. Knowing lengths you could state that [tex] \dfrac{a}{d}= \dfrac{c}{a} [/tex].


8. This ratio is equivalent to [tex] a^2=cd [/tex].


9. Now add results of parts 4 and 8:


[tex] b^2+a^2=ce+cd [/tex].


10. c is common factor, then:


[tex] b^2+a^2=c(e+d) [/tex].


11. Since [tex] e+d=c [/tex] you have [tex] a^2+b^2=c\cdot c=c^2 [/tex].



Answer:

Given information: [tex]\triangle ADC\sim \triangle ACB[/tex] and [tex]\triangle BDC\sim \triangle BCA[/tex].

To Prove : [tex]a^2+b^2=c^2[/tex]

Proof:

   Statement                                               Proof

1. [tex]\triangle ADC\sim \triangle ACB[/tex]                              1. Given

2. [tex]\dfrac{AC}{AB}=\dfrac{AD}{AC}[/tex]                                     2. The ratio of corresponding parts of similar triangles is a constant

3. [tex]\dfrac{b}{c}=\dfrac{e}{b}[/tex]                                           3. Rewrite statement 2 using given side labels.

4. [tex]b^2=ce[/tex]                                           4. Cross multiply statement 4

5. [tex]\triangle BDC\sim \triangle BCA[/tex]                         5. Given

6.  [tex]\dfrac{BC}{BA}=\dfrac{BD}{BC}[/tex]                                   6. The ratio of corresponding parts of similar triangles is a constant

7. [tex]\dfrac{a}{c}=\dfrac{d}{a}[/tex]                                            7. Rewrite statement 5 using given side labels.

8. [tex]a^2=cd[/tex]                                            8. Cross multiply statement 7

9. [tex]a^2+b^2=cd+ce[/tex]                        9. Add statement 4 and 8

10. [tex]a^2+b^2=c(d+e)[/tex]                        10. c is common factor

11. [tex]a^2+b^2=c^2[/tex]                                11. Segment addition property.

Hence proved.