Respuesta :
The plus-minus sign represents that there are two possible outcomes.
In this case, we have [tex]1 \pm \sqrt{5} [/tex]. When we branch out the possibilities we got 2 values: [tex]1 + \sqrt{5} [/tex] and [tex]1 - \sqrt{5} [/tex]
Those are the roots of this equation. When they ask their product, they want you to multiply both numbers.
When we multiply them: [tex](1 + \sqrt{5}) \times( 1 - \sqrt{5}) [/tex]
When we FOIL the we get: [tex]1 \times 1 - 1 \times \sqrt{5} + 1 \times \sqrt{5} - \sqrt{5} \times \sqrt{5} [/tex]
Simplify:
[tex]1 - \sqrt{5} + \sqrt{5} - 5[/tex]
[tex]1 - 5 = 6[/tex]
So the product of the two roots of this equation is 6.
In this case, we have [tex]1 \pm \sqrt{5} [/tex]. When we branch out the possibilities we got 2 values: [tex]1 + \sqrt{5} [/tex] and [tex]1 - \sqrt{5} [/tex]
Those are the roots of this equation. When they ask their product, they want you to multiply both numbers.
When we multiply them: [tex](1 + \sqrt{5}) \times( 1 - \sqrt{5}) [/tex]
When we FOIL the we get: [tex]1 \times 1 - 1 \times \sqrt{5} + 1 \times \sqrt{5} - \sqrt{5} \times \sqrt{5} [/tex]
Simplify:
[tex]1 - \sqrt{5} + \sqrt{5} - 5[/tex]
[tex]1 - 5 = 6[/tex]
So the product of the two roots of this equation is 6.
Answer:
-4
Step-by-step explanation:
Hello!
The two roots of the quadratic are [tex]1 + \sqrt5[/tex] and [tex]1 - \sqrt 5[/tex].
We can utilize the Difference of Squares (DOS) formula for simple multiplication.
DOS formula: [tex]a^2 - b^2 = (a + b)(a - b)[/tex]
Multiply:
- [tex](1 + \sqrt5)(1 - \sqrt5)[/tex]
- [tex](1^2) - (\sqrt5)^2[/tex]
- [tex]1 - 5[/tex]
- [tex]-4[/tex]
The product of the two roots is -4.