let x = second angle
let x + 10 = first angle
let 2( (x) + (x+10) ) = third angle.
Since the interior of a triangle equals 180° then,
[tex](x) + (x + 10) + 2((x) + (x + 10)) = 180[/tex]
[tex]x + x + 10 + 2(2x + 10) = 180[/tex]
[tex]x + x + 10 + 4x + 20 = 180[/tex]
[tex]6x + 30 = 180[/tex]
[tex]6x = 150[/tex]
[tex]x = 25[/tex]
Inputting the value of x gives us each angle.
second angle = 25°
first angle = x + 10 = 25 + 10 = 35°
third angle = 2( (x) + (x+10) ) = 2( (25) + (25+10) )
= 110°