Find the perimeter of the parallelogram with these vertices. , 47 , , −31 , , 41 , , −3−5 give an exact answer (not a decimal approximation). simplify your answer as much as possible.

Respuesta :

The perimeter of the parallelogram is  [tex]2\sqrt{85}+12[/tex]

Explanation

According to the diagram below, Vertices of the parallelogram ABCD are:              A (-3, 1) , B (4, 7) , C (4, 1) and D (-3, -5)

Using distance formula.....

Length of AB [tex]= \sqrt{(-3-4)^2+(1-7)^2}=\sqrt{(-7)^2+(-6)^2}= \sqrt{49+36}=\sqrt{85}[/tex]

Length of BC [tex]=\sqrt{(4-4)^2+(7-1)^2}=\sqrt{0+6^2}=\sqrt{36}=6[/tex]

As the opposite sides are equal in any parallelogram, so [tex]CD=AB=\sqrt{85}[/tex] and [tex]AD=BC= 6[/tex]

Thus the perimeter [tex]=2(\sqrt{85} +6)= 2\sqrt{85}+12[/tex]

Ver imagen Sicista