Respuesta :
[tex] 9^{-3x}=7\ \ \ \ |ln\\\\\ln9^{-3x}=\ln7\ \ \ \ |use\ \log a^n=n\log a\\\\-3x\ln9=\ln7\ \ \ \ |:(-3\ln9)\\\\x=\dfrac{\ln7}{-3\ln9}\to x\approx-\dfrac{1.9459}{3\cdot2.1972}\to x\approx-0.295\\\\Answer:\ c)\ x=-0.295 [/tex]
Answer:
x = −0.295
Step-by-step explanation:
Given : [tex]9^{(-3x)} \sim 7[/tex]
To Find : value of x
Solution:
[tex]9^{(-3x)} \sim 7[/tex]
Taking log both sides
[tex]\log{9^{(-3x)} \sim \log 7[/tex]
Using property: [tex]\log a^n= n \log a[/tex]
So, [tex](-3x)\log 9 \sim \log 7[/tex]
[tex]x \sim \frac{\log 7}{-3 \log 9}[/tex]
[tex]x \sim \frac{\log 7}{-3 \log 9}[/tex]
[tex]x \sim -0.295 [/tex]
Thus Option c is correct.
Hence x = −0.295