We are given
equation of position
[tex]s(t)=(t)ln(3t)[/tex]
Calculation of velocity:
we can find derivative
[tex]s'(t)=1*ln(3t)+t*\frac{3}{3t}[/tex]
[tex]s'(t)=ln(3t)+1[/tex]
so, velocity is
[tex]v(t)=ln(3t)+1[/tex]
now, we can set it to 0
and then we can solve for t
[tex]v(t)=ln(3t)+1=0[/tex]
[tex]t=\frac{1}{3e}[/tex]
Calculation of acceleration:
we can find derivative again
[tex]v'(t)=\frac{3}{3t} +0[/tex]
[tex]v'(t)=\frac{1}{t} [/tex]
so, acceleration is
[tex]a(t)=\frac{1}{t} [/tex]
now, we can plug value of t
[tex]a(\frac{1}{3e})=\frac{1}{\frac{1}{3e}} [/tex]
[tex]a(\frac{1}{3e})=3e [/tex]..................Answer