Respuesta :
Answer-
[tex]\boxed{\boxed{\text{Volume}_2<\text{Volume}_3<\text{Volume}_4<\text{Volume}_1}}[/tex]
Solution-
The volume of the cone is given by,
[tex]\text{Volume}=\pi r^2\dfrac{h}{3}[/tex]
Where,
r = radius of the base circle,
h = height of the cone.
1. Cone with a diameter of 20 units and a height of 12 units
Here,
Radius = 20/2 = 10 units
Height = 12 units
[tex]\text{Volume}_1=\pi \times 10^2\times \dfrac{12}{3}=400\pi[/tex]
2. Cone with a diameter of 18 units and a height of 10 units
Here,
Radius = 18/2 = 9 units
Height = 10 units
[tex]\text{Volume}_2=\pi \times 9^2\times \dfrac{10}{3}=270\pi[/tex]
3. Cone with a radius of 10 units and a height of 9 units
Here,
Radius = 10 units
Height = 9 units
[tex]\text{Volume}_3=\pi \times 10^2\times \dfrac{9}{3}=300\pi[/tex]
4. Cone with a radius of 11 units and a height of 9 units
Here,
Radius = 11 units
Height = 9 units
[tex]\text{Volume}_4=\pi \times 11^2\times \dfrac{9}{3}=363\pi[/tex]
As,
[tex]270\pi <300\pi <363\pi <400\pi[/tex]
[tex]\therefore \text{Volume}_2<\text{Volume}_3<\text{Volume}_4<\text{Volume}_1[/tex]
Answer:
first one- 20, 12
second one- 18, 10
third one-10, 9
fourth- 11, 9
Step-by-step explanation:
for those who don't like spending excessive time reading ^^
you're welcome, stay positive (: