Respuesta :
Answer:
[tex]625\pi\ mm^{3}[/tex]
Step-by-step explanation:
we know that
The volume of the figure is equal to the volume of two cones plus the volume of the cylinder
Find the volume of one cone
[tex]V=\frac{1}{3}\pi r^{2} h[/tex]
we have
[tex]r=10/2=5\ mm[/tex] -----> the radius is half the diameter
[tex]h=15\ mm[/tex]
substitute the values
[tex]V=\frac{1}{3}\pi (5^{2})(15)=125\pi\ mm^{3}[/tex]
Find the volume of the cylinder
[tex]V=\pi r^{2} h[/tex]
we have
[tex]r=10/2=5\ mm[/tex] -----> the radius is half the diameter
[tex]h=15\ mm[/tex]
substitute the values
[tex]V=\pi (5^{2})(15)=375\pi\ mm^{3}[/tex]
Find the volume of the figure
[tex]2*125\pi\ mm^{3}+375\pi\ mm^{3}=625\pi\ mm^{3}[/tex]
Answer: 625π mm³
.
Step-by-step explanation:
Volume of cone = [tex]\dfrac{1}{3}\pi r^2h[/tex] , where r is radius and h is height of cone.
Volume of cylinder = [tex]\pi R^2H[/tex], where R is radius and H is height of cone.
For given picture,
Diameter of cone and cylinder = 10 mm , then radius = 5 mm (half of diameter)
h= 15 mm , r= 5mm
R= 5mm , H=15mm
Combined volume of figure = 2 x (Volume of cone)+ Volume of cylinder
[tex]=2\times(\dfrac{1}{3}\pi (5)^2(15))+\pi (5)^2(15)\\\\=250\pi+375\pi\\\\=625\pi\ mm^3[/tex]
Hence, the volume of this figure is 625π mm³
.