Respuesta :
Answer:
[tex]1024^{10}\\b^{1+m}\\16^{25}[/tex]
Step-by-step explanation:
1.
[tex]2^{100}=\left(2^{10}\right)^{10}=1024^{10}[/tex]
2.
[tex]b\cdot b^{m}=b^{1}\cdot b^{m}=b^{1+m}[/tex]
3.
[tex]2^{100}=\left(2^{4}\right)^{25}=16^{25}[/tex]
_____
The applicable rules of exponents are ...
[tex]\left(a^{b}\right)^{c}=a^{b\cdot c}\\\\a^{b}\cdot a^{c}=a^{b+c}[/tex]
note that [tex]2^{10}[/tex] = 1024, hence
[tex]2^{100}[/tex] = (2^10)^10 = [tex]1024^{10}[/tex]
note that [tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{m+n}[/tex], thus
b × [tex]b^{m}[/tex] = [tex]b^{1+m}[/tex]
note that [tex]2^{4}[/tex] = 16, hence
[tex]2^{100}[/tex] = ([tex]2^{4}[/tex])^25 = [tex]16^{25}[/tex]