Thats simple!
h(x)= [tex] \frac{x^{2}+3x }{4x+27} [/tex]
find h(-8)
All we need to do is PLUG IN THE -8
h(-8)= [tex] \frac{(-8)^{2}+3(-8) }{4(-8)+27} [/tex]
=[tex] \frac{64-24}{-32+27} [/tex] (negative²=positive, negative×positive=negative)
=[tex] \frac{40}{-5} [/tex]
h(-8)=-8