Respuesta :

Answer:

C and D

Step-by-step explanation:

using the rules of exponents

A

[tex]125^{3/7}[/tex] = [tex]\sqrt[7]{125^3}[/tex] ≠ [tex]\sqrt[3]{125^7}[/tex]

B

([tex]\sqrt{12}[/tex])^7 = [tex]12^{7/2}[/tex] ≠ [tex]12^{1/7}[/tex]

C

([tex]\sqrt{4}[/tex])^5 = [tex]4^{5/2}[/tex] ← correct

D

([tex]\sqrt{8}[/tex])^9 = [tex]8^{9/2}[/tex] ← correct


Answer:  The correct options are

(C) [tex]4^\frac{5}{2}~~\textup{and}~~(\sqrt{4})^5.[/tex]

(D) [tex]8^\frac{9}{2}~~\textup{and}~~(\sqrt{8})^9.[/tex]

Step-by-step explanation:  We are to select the correct pairs that shows equivalent expressions.

We will be using the following property of exponents and radicals :

[tex](\sqrt[b]{x})^a=x^\frac{a}{b}.[/tex]

Option (A) :

The given expressions are

[tex](\sqrt[3]{125})^7~~\textup{and}~~125^\frac{3}{7}.[/tex]

We have

[tex](\sqrt[3]{125})^7=125^\frac{7}{3}\neq 125^\frac{3}{7}.[/tex]

So, the expressions are not equivalent and option (A) is incorrect.

Option (B) :

The given expressions are

[tex]12^\frac{1}{7}~~\textup{and}~~(\sqrt{12})^7.[/tex]

We have

[tex]12^\frac{1}{7}=\sqrt[7]{12},\\\\(\sqrt{12})^7=12^\frac{7}{2}.[/tex]

So,

[tex]12^\frac{1}{7}\neq (\sqrt{12})^7.[/tex]

Therefore, the expressions are not equivalent and option (B) is incorrect.

Option (C) :

The given expressions are

[tex]4^\frac{5}{2}~~\textup{and}~~(\sqrt{4})^5.[/tex]

We have

[tex](\sqrt{4})^5=4^\frac{5}{2}[/tex]

Therefore, the expressions are equivalent and option (C) is correct.

Option (D) :

The given expressions are

[tex]8^\frac{9}{2}~~\textup{and}~~(\sqrt{8})^9.[/tex]

We have

[tex](\sqrt{8})^9=8^\frac{9}{2}[/tex]

Therefore, the expressions are equivalent and option (D) is correct.

Thus, (C) and (D) are the correct options.