Respuesta :
bearing in mind that an absolute value expression, is in effect a piece-wise expression, so once we remove the bars, we really end up with two siblings, one is negative, the other positive, of the same expression.
[tex]\bf |2x-3|+4=17\implies |2x-3|=13\implies \begin{cases} +(2x-3)=13\\ 2x-3=13\\ 2x=16\\[1em] x=\cfrac{16}{2}\\[1em] \boxed{x=8}\\[-0.5em] \hrulefill\\ -(2x-3)=13\\ -2x+3=13\\ -2x=10\\[1em] x=\cfrac{10}{-2}\\[1em] \boxed{x=-5} \end{cases}[/tex]
Answer:
x=-5 and x=8
Step-by-step explanation:
|2x-3|+4=17
first step is to get the absolute value alone
subtract 4 from each side
|2x-3|+4-4=17-4
|2x-3|=13
absolute value equations have 2 solutions, one positive and one negative
now we can separate the equation into positive and negative
2x-3 = +13 and 2x-3 = -13
add 3 to each side
2x-3+3 = 13+3 2x-3 + 3 = -13 +3
2x = 16 2x = -10
divide by 2
2x/2 = 16/2 2x/2 = -10/2
x = 8 x = -5
the two solutions are x = -5 and x = 8
lets check
|2x-3|+4=17
x=-5
|2(-5)-3|+4=17
|-10-3|+4=17
|-13|+4=17
absolute values means positive
13+4 = 17
|2x-3|+4=17
x=8
|2(8)-3|+4=17
|16-3|+4=17
|3|+4=17
absolute values means positive
3+4 = 17