A drawbridge rises at a constant rate. It takes 1 1/2 minutes for the drawbridge to rise 6/20 of its total height. How much tike, in minutes, does it take for the drawbridge to reach its total height?

a) 1/5

b)9/20

c)20/9

d)5

Respuesta :

the awnser would be c

Answer:

Option d. 5

Step-by-step explanation:

A drawbridge takes [tex]1\frac{1}{2}[/tex] minutes to rise [tex]\frac{6}{20}[/tex] of its total height.

Let the total height of the drawbridge is h units

∵ Drawbridge rises [tex]\frac{6h}{20}[/tex] units in the time = [tex]\frac{3}{2}[/tex] minutes

∴ Drawbridge rises 1 unit in the time = [tex]\frac{\frac{3}{2} }{\frac{6h}{20}}[/tex] minutes

∴ Drawbridge rises h units in the time = [tex]\frac{\frac{3}{2} }{\frac{6h}{20}}\times h[/tex]

                        = [tex]\frac{3h}{2}\times \frac{20}{6h}[/tex]

                        = [tex]\frac{60}{12}[/tex]

                        = 5 minutes

Option d. 5 minutes is the answer.