Respuesta :

Answer:

x = [tex]\frac{mn(q-p)}{n-m}[/tex]

Step-by-step explanation:

collect the fractional terms on the left side of the equation and other terms on the right side

subtract [tex]\frac{x-n}{n}[/tex] from both sides

[tex]\frac{x-m}{m}[/tex] - [tex]\frac{x-n}{n}[/tex] + p = q

subtract p from both sides

[tex]\frac{x-m}{m}[/tex] - [tex]\frac{x-n}{n}[/tex] = q - p

We require the fractions to have a common denominator of mn

multiply the numerator/denominator of the first fraction by n and the numerator/denominator of the second fraction by m

[tex]\frac{n(x-m)}{mn}[/tex] - [tex]\frac{m(x-n)}{mn}[/tex] = q - p

distribute and simplify the numerators of the fractions

[tex]\frac{nx-nm-mx+mn}{mn}[/tex] = q - p

[tex]\frac{nx-mx}{mn}[/tex] = q - p

factor out x from each term on the numerator

[tex]\frac{x(n-m)}{mn}[/tex] = q - p

multiply both sides by mn

x(n - m) = mn(q - p)

divide both sides by (n - m)

x = [tex]\frac{mn(q-p)}{n-m}[/tex] → n ≠ m