Respuesta :
Hello there!
Question:-
[tex](x-2)/3 \: = \: (x+1)/4[/tex]
We need to find the value of x.
Solution:-
[tex]\sf \longmapsto \: \dfrac{x - 2}{3} = \dfrac{x + 2}{4} [/tex]
Firstly, use Cross Multiplication:-
[tex]\sf \longmapsto \: (x - 2)*(4)=(x+1)*(3)[/tex]
On Simplification:-
[tex]\sf \longmapsto \: 4x - 8 = (x + 1)*3[/tex]
[tex]\sf \longmapsto \: 4x - 8 = 3x + 3[/tex]
Subtract 3x from both sides :-
[tex]\sf \longmapsto \: 4x - 8 - 3x=3x+3 - 3x[/tex]
This equation may be rewritten as :-
[tex]\sf \longmapsto4x - 3x - 8 = 3x - 3x + 3[/tex]
On Simplification:-
[tex]\sf \longmapsto \: x - 8 = 0x + 3[/tex]
[tex]\sf \longmapsto \: x - 8 = 3[/tex]
Add 8 to both sides:-
[tex]\sf \longmapsto \: x - 8 + 8 = 3 + 8[/tex]
As (-)and (+) equals to (-),
[tex]\sf \longmapsto \: x - 0 = 11[/tex]
[tex] \: \sf \longmapsto \: x = 11[/tex]
______________________________________
Henceforth, the value of x is :-
[tex] \boxed{\huge\tt x = 11}[/tex]
______________________________________
Please let me know if you have any questions.
~MisterBrian
Given fractional expression:
[tex]{\sf \longmapsto \dfrac{x-2}{3} = \dfrac{x+1}{4}}[/tex]
Cross multiply the numbers.
[tex]{\sf \longmapsto 4 (x-2) = 3 (x +1)}[/tex]
Multiply the number outside the bracket with the numbers in the bracket.
[tex]{\sf \longmapsto 4x - 8 = 3x +3}[/tex]
Shift all variables on LHS and constants on RHS.
[tex]{\sf \longmapsto 4x - 3x = 3+8}[/tex]
Subtract the values on LHS and Add the values on RHS.
[tex]{\sf \longmapsto 7x = (11)}[/tex]
Shift the number 7 from LHS to RHS.
[tex]{\sf \longmapsto x = \dfrac{11}{7}}[/tex]
[tex]\underline{\boxed{\bf So, \: the \: value \: of \: x \: is \: \dfrac{11}{7}.}}[/tex]
Verification :
[tex]{\sf \longmapsto \dfrac{x-2}{3} = \dfrac{x+1}{4}}[/tex]
Substitute the value of the x.
[tex]{\sf \longmapsto \dfrac{\frac{11}{7}-2}{3}= \dfrac{\frac{11}{7}+1}{4}}[/tex]
[tex]{\sf \longmapsto \dfrac{\frac{11-14}{7}}{3} = \dfrac{\frac{11+7}{7}}{4}}[/tex]
[tex]{\sf \longmapsto \dfrac{\frac{-3}{7}}{3}= \dfrac{\dfrac{18}{7}}{4}}[/tex]
Cancel the number 7 on numerator Of LHS and RHS.
[tex]{\sf \longmapsto \dfrac{-3}{3} = \dfrac{18}{4}}[/tex]
Write the fraction in lowest form by cancellation method.
[tex]{\sf \longmapsto \dfrac{-3}{3} = \dfrac{9}{2}}[/tex]
So,
[tex]{\sf \longmapsto LHS ≠ RHS}[/tex]