Respuesta :

Answer:

Option C. (3,180°)

Step-by-step explanation:

Rectangular form: (-3,0)=(x,y)→x=-3, y=0

Polar form: (r,α)

[tex]r=\sqrt{x^{2}+ y^{2} }[/tex]

Replacing the known values:

[tex]r=\sqrt{(-3)^{2}+0^{2} }\\ r=\sqrt{9+0}\\ r=\sqrt{9}[/tex]

[tex]r=3[/tex]

x=-3<0 (-), then

[tex]\alpha=tan^{-1} (\frac{y}{x})+180{\°}[/tex]

Replacing the known values:

[tex]\alpha =tan^{-1} (\frac{0}{-3})+180{\°}\\ \alpha=tan^{-1} (0)+180{\°}\\ \alpha=0^{\°}+180^{\°}[/tex]

[tex]\alpha=180^{\°}[/tex]

Then, the polar form is: (r,α)=(3,180°)

Answer: Option C. (3,180°)

Step-by-step explanation: I got this right on Edmentum.

Ver imagen elpink25