Respuesta :
Answer:
Option C. (3,180°)
Step-by-step explanation:
Rectangular form: (-3,0)=(x,y)→x=-3, y=0
Polar form: (r,α)
[tex]r=\sqrt{x^{2}+ y^{2} }[/tex]
Replacing the known values:
[tex]r=\sqrt{(-3)^{2}+0^{2} }\\ r=\sqrt{9+0}\\ r=\sqrt{9}[/tex]
[tex]r=3[/tex]
x=-3<0 (-), then
[tex]\alpha=tan^{-1} (\frac{y}{x})+180{\°}[/tex]
Replacing the known values:
[tex]\alpha =tan^{-1} (\frac{0}{-3})+180{\°}\\ \alpha=tan^{-1} (0)+180{\°}\\ \alpha=0^{\°}+180^{\°}[/tex]
[tex]\alpha=180^{\°}[/tex]
Then, the polar form is: (r,α)=(3,180°)
Answer: Option C. (3,180°)
Step-by-step explanation: I got this right on Edmentum.