Respuesta :

From the fundamental law of trigonometric, we have

[tex] \sin^2(\theta) + \cos^2(\theta) = 1 \iff \cos(\theta) = \pm\sqrt{1-\sin^2(\theta)}[/tex]

Since [tex] 0 < \theta < \frac{\pi}{2} [/tex], the cosine must be positive, so we choose the positive solution:

[tex] \cos(\theta) = \sqrt{1-\dfrac{1}{9}} = \dfrac{\sqrt{8}}{3} [/tex]

Now, the rule for the double angle of the tangent states that

[tex]\tan(2\theta) = \dfrac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)} = \dfrac{2\cdot\frac{1}{3}\cdot\frac{\sqrt{8}}{3}}{\frac{8}{9}-\frac{1}{9}} = \dfrac{\frac{2\sqrt{8}}{9}}{\frac{7}{9}} = \dfrac{2\sqrt{8}}{9}\cdot \dfrac{9}{7} = \dfrac{2\sqrt{8}}{7}[/tex]

:

c. 4√2 / 7 .

Step-by-step explanation:

Answer

sin Ф  = 1/3.

cos Ф = √(1 - (1/3)^2)  Note this will be the positive square root as  

 Ф is in the first quadrant.

sin 2Ф  = 2 sin Ф cos Ф

= 2* 1/3 * √(1 - (1/3)^2)

=  2/3 * 2√2/3

= 4√2 / 9

cos 2Ф =  1 -2 sin^2 Ф =  1 - 2* (1/3)^2 = 7/9

tan 2 Ф =   sin 2Ф / cos 2Ф  = 4√2/ 9 / 7/9

=  4√2 / 9 * 9 / 7

=  4√2 / 7 (answer).