Answer:- 330 L
Solution:- At constant pressure, volume is directly proportional to the kelvin temperature.
[tex]V_1T_2=V_2T_1[/tex]
where, [tex]V_1[/tex] is the initial volume at initial temperature [tex]T_1[/tex] and [tex]V_2[/tex] is the new volume at temperature [tex]T_2[/tex] .
From given info,
[tex]V_1[/tex] = 160 mL
[tex]T_1[/tex] = -125 + 273 = 148 K
[tex]T_2[/tex] = 29.0 + 273 = 302 K
[tex]V_2[/tex] = ?
Let's plug in the values and solve this for new volume.
[tex]160mL(302K)=V_2(148K)[/tex]
On rearrangement:
[tex]V_2=\frac{160mL(302K)}{148K}[/tex]
[tex]V_2] = 326 L
If we round the answer for two sig figs(as given in initial volume) then it will be 330 L.
So, the new volume of the balloon is 330 L.