Respuesta :
Answer: Option 1
Step-by-step explanation:
1. You know the lenght of both rectangular prism, therefore if both are similar, the scale factor is:
[tex]sf=\frac{12cm}{4cm}\\sf=3[/tex]
2. Then the scale factor of the volumes is:
[tex]sf_v=3^{3}\\sf_v=27[/tex]
3. Now, you must multiply the volume of the smalller rectangular prism by the scale factor obtained, then you obtain the following result:
[tex]V_2=(24cm^{3})(27)=648cm^{3}[/tex]
Answer: [tex]648 \text{ cube cm}[/tex]
Explanation:
When two solid figures are similar then,
[tex]\text{ The ratio of their volume }= (\text{ ratio of their corresponding edges})^3[/tex]
Here Given prism having volume [tex]V_1[/tex] and [tex]V_2[/tex] are similar,
Thus, By the given figure,
[tex]\frac{ V_2}{24}= (\frac{12}{4})^3[/tex]
[tex]\frac{ V_2}{24}= (3)^3[/tex]
[tex]\frac{ V_2}{24}= 27[/tex]
[tex]V_2= 27\times 24=648\text{ cube cm}[/tex]
⇒ First Option is correct.