Respuesta :

Answer:

The quotient (x + 2) ⇒ the expression [tex]\frac{x^{2}+9x+20 }{x+7}[/tex]

The quotient (x - 3) ⇒ the expression [tex]\frac{x^{2}+3x-23 }{x+6}[/tex]

The quotient (x - 2) ⇒ the expression [tex]\frac{x^{2}+5x-20 }{x+7}[/tex]

The quotient (x + 7) ⇒ the expression [tex]\frac{x^{2}+13x+54 }{x+6}[/tex]

Step-by-step explanation:

[tex]\frac{x^{2}+9x+20 }{x+7}=x+\frac{2x+20}{x+7}[/tex]

∵ [tex]\frac{2x+20}{x+7}= 2+\frac{6}{x+7}[/tex]

∴ The quotient is x + 2

∵ [tex]\frac{x^{2}+3x-23 }{x+6}=x+\frac{-3x-23}{x+6}[/tex]

∵ [tex]\frac{-3x-23}{x+6}=-3+\frac{-5}{x+6}[/tex]

∴ The quotient is x - 3

∵ [tex]\frac{x^{2}+5x-20 }{x+7}=x+\frac{-2x-20}{x+7}[/tex]

∵ [tex]\frac{-2x-20}{x+7}=-2+\frac{-6}{x+7}[/tex]

∴ The quotient is x - 2

∵ [tex]\frac{x^{2}+13x+54 }{x+6}=x+\frac{7x+54}{x+6}[/tex]

∵ [tex]\frac{7x+54}{x+6}=7+\frac{12}{x+6}[/tex]

∴ The quotient is x + 7

Answer:

Given rational expressions:

1. [tex]\frac{x^+13x+54}{x+6}[/tex]

2. [tex]\frac{x^+3x-23}{x+6}[/tex]

3. [tex]\frac{x^+9x+20}{x+7}[/tex]

4. [tex]\frac{x^+5x-20}{x+7}[/tex]

To match with given Quotients.

Quotients are x + 7 , x - 3 , x + 2 and x - 2

We Divide given expression using long division of the polynomilas.

All divisions done in pics.

1. On Dividing we get,

   Quotient = x + 7     and   Remainder = 12

2. On Dividing we get,

   Quotient = x - 3     and   Remainder = -5

3. On Dividing we get,

   Quotient = x + 2     and   Remainder = 6

4. On Dividing we get,

   Quotient = x - 2     and   Remainder = -6

Therefore,

Quotient                              Expressions

[tex]\:\:\:x+2----------\rightarrow\frac{x^+9x+20}{x+7}[/tex]

[tex]\:\:\:x-3----------\rightarrow\frac{x^+3x-23}{x+6}[/tex]

[tex]\:\:\:x-2----------\rightarrow\frac{x^+5x-20}{x+7}[/tex]

[tex]\:\:\:x+7----------\rightarrow\frac{x^+13x+54}{x+6}[/tex]

Ver imagen aquialaska
Ver imagen aquialaska
Ver imagen aquialaska
Ver imagen aquialaska