Respuesta :
Answer:
The quotient (x + 2) ⇒ the expression [tex]\frac{x^{2}+9x+20 }{x+7}[/tex]
The quotient (x - 3) ⇒ the expression [tex]\frac{x^{2}+3x-23 }{x+6}[/tex]
The quotient (x - 2) ⇒ the expression [tex]\frac{x^{2}+5x-20 }{x+7}[/tex]
The quotient (x + 7) ⇒ the expression [tex]\frac{x^{2}+13x+54 }{x+6}[/tex]
Step-by-step explanation:
∵ [tex]\frac{x^{2}+9x+20 }{x+7}=x+\frac{2x+20}{x+7}[/tex]
∵ [tex]\frac{2x+20}{x+7}= 2+\frac{6}{x+7}[/tex]
∴ The quotient is x + 2
∵ [tex]\frac{x^{2}+3x-23 }{x+6}=x+\frac{-3x-23}{x+6}[/tex]
∵ [tex]\frac{-3x-23}{x+6}=-3+\frac{-5}{x+6}[/tex]
∴ The quotient is x - 3
∵ [tex]\frac{x^{2}+5x-20 }{x+7}=x+\frac{-2x-20}{x+7}[/tex]
∵ [tex]\frac{-2x-20}{x+7}=-2+\frac{-6}{x+7}[/tex]
∴ The quotient is x - 2
∵ [tex]\frac{x^{2}+13x+54 }{x+6}=x+\frac{7x+54}{x+6}[/tex]
∵ [tex]\frac{7x+54}{x+6}=7+\frac{12}{x+6}[/tex]
∴ The quotient is x + 7
Answer:
Given rational expressions:
1. [tex]\frac{x^+13x+54}{x+6}[/tex]
2. [tex]\frac{x^+3x-23}{x+6}[/tex]
3. [tex]\frac{x^+9x+20}{x+7}[/tex]
4. [tex]\frac{x^+5x-20}{x+7}[/tex]
To match with given Quotients.
Quotients are x + 7 , x - 3 , x + 2 and x - 2
We Divide given expression using long division of the polynomilas.
All divisions done in pics.
1. On Dividing we get,
Quotient = x + 7 and Remainder = 12
2. On Dividing we get,
Quotient = x - 3 and Remainder = -5
3. On Dividing we get,
Quotient = x + 2 and Remainder = 6
4. On Dividing we get,
Quotient = x - 2 and Remainder = -6
Therefore,
Quotient Expressions
[tex]\:\:\:x+2----------\rightarrow\frac{x^+9x+20}{x+7}[/tex]
[tex]\:\:\:x-3----------\rightarrow\frac{x^+3x-23}{x+6}[/tex]
[tex]\:\:\:x-2----------\rightarrow\frac{x^+5x-20}{x+7}[/tex]
[tex]\:\:\:x+7----------\rightarrow\frac{x^+13x+54}{x+6}[/tex]