If the hypotenuse of a right angled isosceles triangle is 7 root 2, then find the area of the circle inscribed in it.

Respuesta :

Answer:

Area = 13.20 to nearest hundredth.

Step-by-step explanation:

The ratio of the sides of an isosceles right-angled triangle is 1:1: sqrt2, so in this case the 2 legs each have length 7.

The radius of the circle  =  sqrt [ (s - a)(s - b)(s -c) / s] where s = the semi-perimeter.

s = (7sqrt2 + 7 + 7) / 2 =  11.9497

so the radius =  sqrt [ ( 2.0502 * 4.9497 * 4.0497) / 11.9497) ]

= 2.05

So the area = pir^2 = 13.20