Solving Rational equations. LCD method. Show work. Image attached.

[tex]\frac{4}{k^{2} -8k +12 } = \frac{k}{k-2} + \frac{1}{k-6}[/tex]

Solving Rational equations LCD method Show work Image attached texfrac4k2 8k 12 frackk2 frac1k6tex class=

Respuesta :

[tex](k-2)(k-6)=k^2-2k-6k+12=k^2-8k+12[/tex]

So in order to get all the fractions to have a common denominator, we need to multiply [tex]\dfrac k{k-2}[/tex] by [tex]\dfrac{k-6}{k-6}[/tex], and [tex]\dfrac1{k-6}[/tex] by [tex]\dfrac{k-2}{k-2}[/tex]:

[tex]\dfrac k{k-2}\cdot\dfrac{k-6}{k-6}=\dfrac{k(k-6)}{(k-2)(k-6)}=\dfrac{k^2-6k}{k^2-8k+12}[/tex]

[tex]\dfrac1{k-6}\cdot\dfrac{k-2}{k-2}=\dfrac{k-2}{(k-2)(k-6)}=\dfrac{k-2}{k^2-8k+12}[/tex]

Now,

[tex]\dfrac4{k^2-8k+12}=\dfrac{(k^2-6k)+(k-2)}{k^2-8k+12}[/tex]

As long as [tex]k\neq2[/tex] and [tex]k\neq6[/tex] (which we can't have because otherwise [tex]k^2-8k+12=0[/tex]), we can cancel [tex]k^2-8k+12[/tex] in the denominators on both sides:

[tex]4=(k^2-6k)+(k-2)[/tex]

[tex]4=k^2-5k-2[/tex]

[tex]0=k^2-5k-6[/tex]

We can factorize the right side:

[tex]0=(k-6)(k+1)[/tex]

which tells us that [tex]k=6[/tex] and [tex]k=-1[/tex] are solutions.