Respuesta :

Check the picture below.

notice, we use the 30-60-90 rule to get the length of RT, and then the 45-45-90 rule to get "x".

Ver imagen jdoe0001

Answer:

Step-by-step explanation:

Remark

x is going to be the same thing as the hypotenuse of ΔRST.  Find that and you have x.

Givens

<STR = 60°

RT = 2√3

Solution

Sin(60°) = opposite / hypotenuse

Sin(60°) = √3 / 2

Sin (60°)= 2 √3 / hypotenuse

hypotenuse = 2√3 // sin(60°)

hypoteneuse = 2√3 /√3/2

[tex]\text{hypotenuse = }\dfrac{2\sqrt{3}}{\dfrac{\sqrt{3} }{2}} = 2*2[/tex]

The √3's cancel. The answer is 4

========================

ΔRTQ is a right angle isosceles triangle

∴RT = RQ

X = 4