aliahe
contestada

How do you use the limit comparison test on this particular series?
Calculus series tests​

How do you use the limit comparison test on this particular seriesCalculus series tests class=

Respuesta :

Compare [tex]\dfrac1{\sqrt{n^2+1}}[/tex] to [tex]\dfrac1{\sqrt{n^2}}=\dfrac1n[/tex]. Then in applying the LCT, we have

[tex]\displaystyle\lim_{n\to\infty}\left|\frac{\frac1{\sqrt{n^2+1}}}{\frac1n}\right|=\lim_{n\to\infty}\frac n{\sqrt{n^2+1}}=1[/tex]

Because this limit is finite, both

[tex]\displaystyle\sum_{n=1}^\infty\frac1{\sqrt{n^2+1}}[/tex]

and

[tex]\displaystyle\sum_{n=1}^\infty\frac1n[/tex]

behave the same way. The second series diverges, so

[tex]\displaystyle\sum_{n=0}^\infty\frac1{\sqrt{n^2+1}}=1+\sum_{n=1}^\infty\frac1n[/tex]

is divergent.