Respuesta :

gmany

Answer:

$357

Step-by-step explanation:

We have a rectangle measuring 25 feet × 9 feet. Remove from the rectangle two regular hexagons with a side length equal to 2 feet.

The formula of an area of a rectangle:

[tex]A_r=lw[/tex]

l - length, w - width.

Substitute l = 25 ft and w = 9 ft:

[tex]A_r=(25)(9)=225\ ft^2[/tex]

The formula of an area of a regular hexagon:

[tex]A_h=6\cdot\dfrac{a^2\sqrt3}{4}[/tex]

a - side

Substitute a = 2 ft:

[tex]A_h=6\cdot\dfrac{2^2\sqrt6}{4}=6\sqrt3\ ft^2[/tex]

The area of the wall:

[tex]A=A_r-2A_h[/tex]

Substitute:

[tex]A=225-2(6\sqrt3)=225-12\sqrt3\approx225-20.785=204.215\ ft^2[/tex]

Paiting the wall costs $1.75 per ft². Calculate:

[tex](\$1.75)(204.215)\approx\$357[/tex]