[tex]\bf \cfrac{4v+1}{6v^2-19v+10}\div \boxed{x}=\cfrac{4v-1}{3v-2}\implies \cfrac{~~\frac{4v+1}{6v^2-19v+10}~~}{x}=\cfrac{4v-1}{3v-2} \\\\\\ \stackrel{\textit{cross-multipying}}{\cfrac{~~\frac{4v+1}{6v^2-19v+10}~~}{\frac{4v-1}{3v-2}}=x}\implies \cfrac{4v+1}{6v^2-19v+10}\cdot \cfrac{3v-2}{4v-1}=x \\\\\\ \cfrac{4v+1}{(\underline{3v-2})(2v-5)}\cdot \cfrac{\underline{3v-2}}{4v-1}=x\implies \cfrac{4v+1}{(2v-5)(4v-1)}=x \\\\\\ \cfrac{4v+1}{8v^2-2v-20v+5}=x\implies \cfrac{4v+1}{8v^2-22v+5}=x[/tex]