Respuesta :
Answer:
Length of radius = [tex]5\sqrt{2}[/tex]
Step-by-step explanation:
The radius of the circle is the distance between the center and the point on the circle given.
The distance formula is [tex]\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
Where
x_1 = 0
y_1 = -6
and
x_2 = 5
y_2 = -1
plugging these into the formula we get:
[tex]\sqrt{(y_2-y_1)^2+(x_2-x_1)^2} \\=\sqrt{(-1-(-6))^2+(5-0)^2} \\=\sqrt{(-1+6)^2+(5)^2} \\=\sqrt{5^2 + 5^2} \\=\sqrt{50} \\=5\sqrt{2}[/tex]
Answer:
The radius of circle = 5√2 units
Step-by-step explanation:
Points remember
Distance formula:-
Let (x₁, y₁) and (x₂, y₂) be the two points, then the distance between these two points is given by
Distance = √[(x₂ - x₁)² + (y - y₁)²]
It is given that, center of circle (0, -6) and passes through (5, -1)
To find the radius of circle
Here (x₁, y₁) = (0, -6) and (x₂, y₂) = (5, -1)
Radius r = √[(x₂ - x₁)² + (y - y₁)²]
= √[(5 - 0)² + (-1 - -6)²]
= √(5² + 5²) = √(25 + 25) = √50 = 5√2 units
Therefore radius of circle = 5√2 units