Respuesta :

ANSWER

[tex]2 ( { \cos \: 56 \degree + i \sin \:56 \degree) }[/tex]

EXPLANATION

The complex number given to us is in the polar form,

32(cos 280° + i sin 280°)

The fifth root is

[tex] {32}^{ \frac{1}{5} } ( { \cos280 \degree + i \sin280 \degree) }^{ \frac{1}{5} } [/tex]

This is equal to:

[tex]2 ( { \cos280 \degree + i \sin280 \degree) }^{ \frac{1}{5} } [/tex]

According to the DeMoivre's Theorem,

[tex]( { \cos \theta \: \degree + i \sin\theta \degree) }^{ \frac{p}{q} } = ( { \cos \frac{p}{q} \theta \degree + i \sin \frac{p}{q} \theta \degree) }[/tex]

We now use the DeMoivre's Theorem to obtain:

[tex]2 ( { \cos280 \degree + i \sin280 \degree) }^{ \frac{1}{5} } = 2 ( { \cos \: \frac{1}{5} \times 280 \degree + i \sin \:\frac{1}{5} \times 280 \degree) }[/tex]

[tex]2 ( { \cos280 \degree + i \sin280 \degree) }^{ \frac{1}{5} } = 2 ( { \cos \: 56 \degree + i \sin \:56 \degree) }[/tex]