Answer:
[tex]\large\boxed{A.\ \dfrac{1}{2}x+\dfrac{11}{2}}[/tex]
Step-by-step explanation:
[tex]-3x-(x-1)+\dfrac{3}{2}(3x+3)\qquad\text{use the distributive property}\\\\=-3x-x-(-1)+\left(\dfrac{3}{2}\right)(3x)+\left(\dfrac{3}{2}\right)(3)\\\\=-3x-x+1+\dfrac{9}{2}x+\dfrac{9}{2}\qquad\text{combine like terms}\\\\=\bigg(-3x-x+\dfrac{9}{2}x\bigg)+\bigg(1+\dfrac{9}{2}\bigg)\\\\=\bigg(\dfrac{-6}{2}x-\dfrac{2}{2}x+\dfrac{9}{2}x\bigg)+\bigg(\dfrac{2}{2}+\dfrac{9}{2}\bigg)\\\\=\dfrac{-6-2+9}{2}x+\dfrac{2+9}{2}=\dfrac{1}{2}x+\dfrac{11}{2}[/tex]