if you horizontally shift the square root parent function, F(x) = [tex]\sqrt{x}[/tex], left four units, what is the equation of the new function?

Respuesta :

ANSWER

[tex]g(x) = \sqrt{x + 4} [/tex]

EXPLANATION

The parent square root function is

[tex]f(x) = \sqrt{x} [/tex]

The translation

[tex]g(x ) = \sqrt{x + k} [/tex]

Will shift the graph of f(x) k units to left.

The translation

[tex]g(x) = \sqrt{x -k} [/tex]

will shift the graph of f(x) to the right by k units.

Therefore if f(x) is shifted 4 units to the left its new equation is:

[tex]g(x) = \sqrt{x + 4} [/tex]