Respuesta :

For this case we must find the product of the following expression:[tex]3 (x + 4) (x-5)[/tex]

We must apply distributive property to the terms of the first parenthesis:

[tex](3x + 12) (x-5) =[/tex]

Again we apply the distributive property:

[tex]3x ^ 2-15x + 12x-60 =\\3x ^ 2-3x-60[/tex]

ANswer:

[tex]3x ^ 2-3x-60[/tex]

Step 1: Distribute the 3 to x and 4

(3x + 12)(x - 5)

Step 2: FOIL (First, Outside, Inside, Last)

Multiply the first of the values in the parentheses together

(3x + 12) (x - 5)

[tex]3x^{2}[/tex]

Multiply the outside values in the parentheses together

(3x + 12)(x - 5)

-15x

Multiply the inside values of the parentheses together

(3x + 12)(x - 5)

12x

Multiply the last values of the parentheses together

(3x + 12)(x - 5)

-60

Step 3: Add all the FOIL values together

3[tex]x^{2}[/tex] + (-15x) + 12x + (-60)

Step 4: Combine like terms

3[tex]x^{2}[/tex] + (-15x) + 12x + (-60)

3[tex]x^{2}[/tex] - 3x - 60

Hope this helped!