Respuesta :
For this case we must find the product of the following expression:[tex]3 (x + 4) (x-5)[/tex]
We must apply distributive property to the terms of the first parenthesis:
[tex](3x + 12) (x-5) =[/tex]
Again we apply the distributive property:
[tex]3x ^ 2-15x + 12x-60 =\\3x ^ 2-3x-60[/tex]
ANswer:
[tex]3x ^ 2-3x-60[/tex]
Step 1: Distribute the 3 to x and 4
(3x + 12)(x - 5)
Step 2: FOIL (First, Outside, Inside, Last)
Multiply the first of the values in the parentheses together
(3x + 12) (x - 5)
[tex]3x^{2}[/tex]
Multiply the outside values in the parentheses together
(3x + 12)(x - 5)
-15x
Multiply the inside values of the parentheses together
(3x + 12)(x - 5)
12x
Multiply the last values of the parentheses together
(3x + 12)(x - 5)
-60
Step 3: Add all the FOIL values together
3[tex]x^{2}[/tex] + (-15x) + 12x + (-60)
Step 4: Combine like terms
3[tex]x^{2}[/tex] + (-15x) + 12x + (-60)
3[tex]x^{2}[/tex] - 3x - 60
Hope this helped!