Respuesta :
Answer:
68% of exam scores lie within one std. dev. of the mean
Step-by-step explanation:
Because the standard deviation is 100, one standard deviation above the mean comes out to 600. Likewise, one std. dev. below the mean comes out to 400. By the Empirical Rule, 68% of exam scores lie within one std. dev. of the mean.
Answer:
[tex]P(400<x<600) = 68.3\%[/tex]
Step-by-step explanation:
We know that the average [tex]\mu[/tex] is:
[tex]\mu=500[/tex]
The standard deviation [tex]\sigma[/tex] is:
[tex]\sigma=100[/tex]
The Z-score is:
[tex]Z=\frac{x-\mu}{\sigma}[/tex]
We seek to find
P(400<x<600)
This is:
[tex]P(400<x<600)=P(\frac{400-500}{100}<\frac{x-\mu}{\sigma}<\frac{600-500}{100})\\\\P(400<x<600)=P(-1<Z<1)[/tex]
Looking for the value of z in a normal table we have to:
[tex]P(Z>1) =0.1587\\\\P(Z>-1) = 0.8413[/tex]
So
[tex]P(-1<Z<1)=P(Z>-1) - P(Z>1) =0.8413-0.1587=0.6826\\\\P(400<x<600) = 68.3\%[/tex]