Respuesta :
The values of 12C4 and 11P4 are 495 and 7920, respectively
The expressions are illustrations of permutation and combination, and they are calculated using:
[tex]^nC_r = \frac{n!}{(n -r)!r!}[/tex]
and
[tex]^nP_r = \frac{n!}{(n -r)!}[/tex]
So, we have:
[tex]^{12}C_4 = \frac{12!}{(12 -4)!4!}[/tex]
Evaluate the difference
[tex]^{12}C_4 = \frac{12!}{8!4!}[/tex]
Evaluate the factorials
[tex]^{12}C_4 = \frac{479001600}{967680}[/tex]
Divide
[tex]^{12}C_4 = 495[/tex]
Also, we have:
[tex]^{11}P_4 = \frac{11!}{(11 -4)!}[/tex]
Evaluate the difference
[tex]^{11}P_4 = \frac{11!}{7!}[/tex]
Evaluate the quotient
[tex]^{11}P_4 = 7920[/tex]
Hence, the values of 12C4 and 11P4 are 495 and 7920, respectively
Read more about combination and permutation at:
https://brainly.com/question/4658834