Respuesta :

12P4: 11•5•9=495
11P4: 11 •10•9•8=7920

The values of 12C4 and 11P4 are 495 and 7920, respectively

The expressions are illustrations of permutation and combination, and they are calculated using:

[tex]^nC_r = \frac{n!}{(n -r)!r!}[/tex]

and

[tex]^nP_r = \frac{n!}{(n -r)!}[/tex]

So, we have:

[tex]^{12}C_4 = \frac{12!}{(12 -4)!4!}[/tex]

Evaluate the difference

[tex]^{12}C_4 = \frac{12!}{8!4!}[/tex]

Evaluate the factorials

[tex]^{12}C_4 = \frac{479001600}{967680}[/tex]

Divide

[tex]^{12}C_4 = 495[/tex]

Also, we have:

[tex]^{11}P_4 = \frac{11!}{(11 -4)!}[/tex]

Evaluate the difference

[tex]^{11}P_4 = \frac{11!}{7!}[/tex]

Evaluate the quotient

[tex]^{11}P_4 = 7920[/tex]

Hence, the values of 12C4 and 11P4 are 495 and 7920, respectively

Read more about combination and permutation at:

https://brainly.com/question/4658834