ANSWER
[tex]9\: < x \leqslant0[/tex]
EXPLANATION
The given compound inequality is
[tex] - 33 \: > - 3x - 6 \geqslant - 6[/tex]
We need to simplify this inequality so that we can obtain x standing alone between the inequality signs.
We add 6 through out the inequality.
[tex]- 33 + 6\: > - 3x - 6 + 6 \geqslant - 6 + 6[/tex]
This simplifies to:
[tex]- 27\: > - 3x \geqslant 0[/tex]
We now divide through by -3 and reverse the inequality sign.
[tex] \frac{- 27}{ - 3} \: < \frac{ - 3x}{ - 3} \leqslant \frac{0}{ - 3} [/tex]
We now simplify to get:
[tex]9\: < x \leqslant 0[/tex]