Respuesta :

Answer : The pH of 0.001 M [tex]H_2SO_4[/tex] is, 2.69 and the pH after mixing the solution is, 3.30.

Explanation :

First we have to calculate the concentration of hydrogen ion.

The balanced dissociation reaction will be,

[tex]H_2SO_4\rightarrow 2H^++SO_4^{2-}[/tex]

The concentration of [tex]H_2SO_4[/tex] = x = 0.001 M

The concentration of [tex]H^+[/tex] ion = 2x = 2 × 0.001 M = 0.002 M

The concentration of [tex]SO_4^{2-}[/tex] = x = 0.001 M

Now we have to calculate the pH of 0.001 M [tex]H_2SO_4[/tex].

[tex]pH=-\log [H^+][/tex]

[tex]pH=-\log (0.002)[/tex]

[tex]pH=2.69[/tex]

Now we have to calculate the molarity after mixing the solution.

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1[/tex] = molarity of [tex]H_2SO_4[/tex] solution = 0.001 M

[tex]V_1[/tex] = volume of [tex]H_2SO_4[/tex] solution = 250 ml

[tex]M_2[/tex] = molarity of after mixing = ?

[tex]V_2[/tex] = volume of after mixing = 250 + 750 = 1000 ml

Now put all the given values in the above formula, we get the molarity after mixing the solution.

[tex](0.001M)\times 250ml=M_2\times (1000ml)[/tex]

[tex]M_2=2.5\times 10^{-4}M[/tex]

The concentration of [tex]H^+[/tex] ion = [tex]2\times (2.5\times 10^{-4}M)=5\times 10^{-4}M[/tex]

Now we have to calculate the pH after mixing the solution.

[tex]pH=-\log [H^+][/tex]

[tex]pH=-\log (5\times 10^{-4})[/tex]

[tex]pH=3.30[/tex]

Therefore, the pH of 0.001 M [tex]H_2SO_4[/tex] is, 2.69 and the pH after mixing the solution is, 3.30.