The pmf of the amount of memory X (GB) in a purchased flash drive is given as the following. x 1 2 4 8 16 p(x) 0.05 0.10 0.30 0.45 0.10 (a) Compute E(X). (Enter your answer to two decimal places.) GB (b) Compute V(X) directly from the definition. (Enter your answer to four decimal places.) GB2 (c) Compute the standard deviation of X. (Round your answer to three decimal places.) GB (d) Compute V(X) using the shortcut formula. (Enter your answer to four decimal places.) GB2

Respuesta :

a. Expected value is defined by

[tex]E[X]=\displaystyle\sum_xx\,p(x)[/tex]

so we get

[tex]E[X]=1\cdot0.05+2\cdot0.10+4\cdot0.30+8\cdot0.45+16\cdot0.10[/tex]

[tex]\boxed{E[X]=6.65}[/tex]

b. Variance is defined by

[tex]V[X]=E[(X-E[X])^2][/tex]

so with the expectation found above, we have

[tex]V[X]=E[(X-6.65)^2][/tex]

[tex]V[X]=\displaystyle\sum_x(x-6.65)^2\,p(x)[/tex]

(by definition of expectation)

[tex]V[X]=(1-6.65)^2\cdot0.05+(2-6.65)^2\cdot0.10+(4-6.65)^2\cdot0.30+(8-6.65)^2\cdot0.45+(16-6.65)^2\cdot0.10[/tex]

[tex]\boxed{V[X]=15.4275}[/tex]

c. Standard deviation is the square root of variance:

[tex]\boxed{\sqrt{V[X]}\approx3.928}[/tex]

d. I assume "shortcut formula" refers to

[tex]V[X]=E[X^2]-E[X]^2[/tex]

which is easily derived from the definition of variance. We have (by def. of expectation)

[tex]E[X^2]=\displaystyle\sum_xx^2\,p(x)[/tex]

[tex]E[X^2]=1^2\cdot0.05+2^2\cdot0.10+4^2\cdot0.30+8^2\cdot0.45+16^2\cdot0.10[/tex]

[tex]E[X^2]=59.65[/tex]

and so the variance is again

[tex]V[X]=59.65-6.65^2[/tex]

[tex]\boxed{V[X]=15.4275}[/tex]

as expected.