Answer:
The distance to the first anti-nodal line is [tex]2.11\times10^{-3}\ m[/tex].
Explanation:
Given that,
Wavelength = 488 nm
Width [tex]d=6.23\times10^{-4}\ m[/tex]
Distance D =2.7 m
We need to calculate the distance to the first anti-nodal line
Using formula of the distance for first anti-nodal line
[tex]y_{n}=\dfrac{n\lambda D}{d}[/tex].....(I)
Where, n = number of fringe
d = width
D = distance from the screen
[tex]\lambda[/tex]=wavelength of light
Put the all value in the equation (I)
[tex]y_{n}=\dfrac{488\times10^{-9}\times2.7}{6.23\times10^{-4}}[/tex]
[tex]y_{n}=2.11\times10^{-3}\ m[/tex]
Hence, The distance to the first anti-nodal line is [tex]2.11\times10^{-3}\ m[/tex].