A vector has components Ax = 52.0 m and Ay = 41.0 m. Find: (a) The length of the vector A.
(b) The angle it makes with the x-axis (in degrees).

Respuesta :

Answer:

Part a)

A = 66.2 m

Part b)

Angle = 38.35 degree

Explanation:

Part a)

Length of the vector is the magnitude of the vector

here we know that

[tex]A_x = 52.0 m[/tex]

[tex]A_y = 41.0 m[/tex]

now we have

[tex]A = \sqrt{A_x^2 + A_y^2}[/tex]

[tex]A = \sqrt{52^2 + 41^2}[/tex]

[tex]A = 66.2 m[/tex]

Part b)

Angle made by the vector is given as

[tex]tan\theta = \frac{A_y}{A_x}[/tex]

[tex]tan\theta = \frac{41}{52}[/tex]

[tex]\theta = 38.25 degree[/tex]