Answer:
Part a)
[tex]\theta_1 = 10.3 degree[/tex]
Part b)
[tex]\theta_2 = 21 degree[/tex]
Part c)
[tex]\theta_3 = 32.5 degree[/tex]
Part d)
[tex]\theta_4 = 45.8 degree[/tex]
Explanation:
For the position of dark fringe the path difference of light is odd multiple of half of the wavelength
so here we will have
[tex]dsin\theta = \frac{2m + 1}{2}\lambda[/tex]
part a)
for m = 0 we have
[tex]d sin\theta = \frac{\lambda}{2}[/tex]
[tex](1.3 \times 10^{-6})sin\theta = \frac{466 \times 10^{-9}}{2}[/tex]
[tex]\theta = 10.3 degree[/tex]
Part b)
Similarly for the maximum intensity we will have path difference must be integral multiple of wavelength
so we have
[tex]d sin\theta = N\lambda[/tex]
for m = 1 we have
[tex](1.3 \times 10^{-6})sin\theta = 466 \times 10^{-9}[/tex]
[tex]\theta = 21 degree[/tex]
Part c)
for m = 1 we have
[tex]d sin\theta = \frac{3\lambda}{2}[/tex]
[tex](1.3 \times 10^{-6})sin\theta = \frac{3(466 \times 10^{-9})}{2}[/tex]
[tex]\theta = 32.5 degree[/tex]
Part d)
for m = 2 again we have
[tex]d sin\theta = N\lambda[/tex]
[tex](1.3 \times 10^{-6})sin\theta = 2\times 466 \times 10^{-9}[/tex]
[tex]\theta = 45.8 degree[/tex]