Respuesta :

Answer:

The fraction form of given number is [tex]\frac{38}{111}[/tex].

Step-by-step explanation:

The given repeating decimal number is

[tex]0.\overline{342}[/tex]

Let [tex]x=0.\overline{342}[/tex]

It can be written as

[tex]x=0.342342342...[/tex]

The digits repeated after 3 decimal places. So multiply both sides by 1000.

[tex]1000x=0.342342342...\times 1000[/tex]

[tex]1000x=342.342342...[/tex]

[tex]1000x=342+0.342342...[/tex]

[tex]1000x=342+0.\overline{342}[/tex]

[tex]1000x=342+x[/tex]

Subtract x from both the sides.

[tex]1000x-x=342[/tex]

[tex]999x=342[/tex]

Divide both the sides by 999.

[tex]x=\frac{342}{999}[/tex]

[tex]0.\overline{342}=\frac{342}{999}[/tex]

Cancel out the common factors.

[tex]0.\overline{342}=\frac{38}{111}[/tex]

Therefore the fraction form of given number is [tex]\frac{38}{111}[/tex].