he function ​f(x,y)equals5 x plus 5 y has an absolute maximum value and absolute minimum value subject to the constraint 9 x squared minus 9 xy plus 9 y squared equals 4. Use Lagrange multipliers to find these values.

Respuesta :

You're looking for extrema of [tex]f(x,y)=5x+5y[/tex] subject to [tex]9x^2-9xy+9y^2=4[/tex].

The Lagrangian is

[tex]L(x,y,\lambda)=5x+5y+\lambda(9x^2-9xy+9y^2-4)[/tex]

with critical points where

[tex]L_x=5+\lambda(18x-9y)=0\implies\dfrac5\lambda=9y-18x[/tex]

[tex]L_y=5+\lambda(18y-9x)=0\implies\dfrac5\lambda=9x-18y[/tex]

[tex]L_\lambda=9x^2-9xy+9y^2-4=0[/tex]

[tex]L_x=0[/tex] and [tex]L_y=0[/tex] together tell you that

[tex]9y-18x=9x-18y\implies27x=27y\implies x=y[/tex]

Substituting [tex]y=x[/tex] into [tex]L_\lambda=0[/tex] gives you

[tex]9x^2-9x^2+9x^2-4=0\implies x^2=\dfrac49\implies x=\pm\dfrac23[/tex]

So you get two critical points, [tex]\left(-\dfrac23,-\dfrac23\right)[/tex] and [tex]\left(\dfrac23,\dfrac23\right)[/tex].

[tex]f\left(-\dfrac23,-\dfrac23\right)=-\dfrac{20}3[/tex] (min)

[tex]f\left(\dfrac23,\dfrac23\right)=\dfrac{20}3[/tex] (max)