Answer:
a. k=150N/m, b.W=0.75J,c. W=12J, d.W=9J
Explanation:
a. The Hooke's Law states[tex]F=kx[/tex], where [tex]F[/tex] is the force, [tex]k[/tex] the spring constant and [tex]x[/tex] the displacement, Knowing the force and the displacement you can find [tex]k[/tex]:
[tex]F=kx[/tex]
[tex]k=\frac{F}x=\frac{30}{0.2}=150N/m[/tex]
b. The work done by a force [tex]F(s)[/tex] that moves along a displacement [tex]s[/tex] is:
[tex]W=\int\limits^{x_2}_{x_1} {F(s)} \, ds[/tex]
Then[tex]F(s)=ks[/tex] (Hooke's Law)
[tex]W=\int\limits^{x_2}_{x_1} {F(s)} \, ds=\int\limits^{x_2}_{x_1} {ks} \, ds=\frac{1}{2} ks^2|\limits^{x_2}_{x_1}=\frac{1}{2} k(x_2^2-x_1^2)[/tex]
Work needed to go from [tex]x_1=0[/tex] to [tex]x_2=0.1[/tex]
[tex]W=\frac{1}{2} k(x_2^2-x_1^2)=\frac{1}{2} 150(0.1^2-0^2)=75(0.01)=0.75 J[/tex]
c. Work needed to go from [tex]x_1=0[/tex] to [tex]x_2=0.4[/tex]
[tex]W=\frac{1}{2} k(x_2^2-x_1^2)=\frac{1}{2} 150(0.4^2-0^2)=75(0.16)=12 J[/tex]
d. Work needed to go from [tex]x_1=0.2[/tex] to [tex]x_2=0.4[/tex]
[tex]W=\frac{1}{2} k(x_2^2-x_1^2)=\frac{1}{2} 150(0.4^2-0.2^2)=75(0.16-0.04)=75(0.12)=9 J[/tex]