Respuesta :

r3t40

The midpoint of [tex]AC[/tex] is [tex]E[/tex].

Hope this helps.

r3t40

Answer:

Step-by-step explanation:

Given ABCD is a parallelogram

To prove ⇒ AC trisects BD, and BD bisects AC.

Proof ⇒ Since coordinates of points A, B, C and D have been given in the diagram. If we prove that midpoint of AC and BD are common then AC and BD will equally bisect each other.

Midpoint of AC = [tex](\frac{x+x'}{2},\frac{y+y'}{2})[/tex]

coordinates of A and C are (0,0) and (2a + 2b, 2c)

Now mid point  [tex]E=(\frac{2a+2b+0}{2},\frac{2c+0}{2})[/tex]

                             = [(a+b),c]

Now mid point of BD =[tex](\frac{2b+2a}{2},\frac{2c+0}{2})[/tex]

                                   = [(b+a), c]

It proves that midpoints of AC and BD are common.

So AC trisects BD and BD bisects AC.