Respuesta :
Answer:
C
Step-by-step explanation:
[tex]\frac{5}{4t}-\frac{t+4}{10t^2}=\frac{5\left(10t^2\right)-4t\left(t+4\right)}{40t^3}=\frac{2t\left(25t-2\left(t+4\right)\right)}{40t^3}=\frac{\left(25t-2t-8\right)}{20t^2}=\frac{23t-8}{20t^2}[/tex]
For this case we must find the value of the following expression:
[tex]\frac {5} {4t} - \frac {t + 4} {10t ^ 2}[/tex]
So, we have:
[tex]\frac {5 * 10t ^ 2-4t (t + 4)} {4t * 10t ^ 2} =\\\frac {50t ^ 2-4t ^ 2-16t} {40t ^ 3} =[/tex]
We add similar terms:
[tex]\frac {46t ^ 2-16t} {40t ^ 3} =[/tex]
We simplify dividing the numerator and denominator by 2:
[tex]\frac {23t ^ 2-8t} {20t ^ 3} =[/tex]
We factor the numerator:
[tex]\frac {t (23t-8)} {20t ^ 3} =[/tex]
We simplify:
[tex]\frac {23t-8} {20t ^ 2}[/tex]
Answer:
Option C