Respuesta :
Answer:
(2x)^3+(y)^3=(2x+y)(4x^2-2xy+y^2)
Step-by-step explanation:
a= 2x and b = y
then a^3 + b^3 = ?
We know that:
a^3+b^3 = (a + b)(a^2 – ab + b^2)
Putting a =2x and b=y and finding the answer
(2x)^3+(y)^3=(2x+y)((2x)^2-(2x)(y)+(y)^2)
(2x)^3+(y)^3=(2x+y)(4x^2-2xy+y^2)
So, (2x)^3+(y)^3=(2x+y)(4x^2-2xy+y^2)
Answer:
The required product should be [tex](2x)^3+(y)^3=(2x+y)(4x^2-2xy+y^2)[/tex]
Step-by-step explanation:
Consider the provided information.
Tomas learned that the product of the polynomials [tex](a + b)(a^2 - ab + b^2)[/tex] was a special pattern that would result in a sum of cubes, [tex]a^3 + b^3[/tex].
From the above information it is given that:
[tex]a^3+b^3 = (a + b)(a^2 -ab + b^2)[/tex]
Substitute a = 2x and b = y in above and solve.
[tex](2x)^3+(y)^3=(2x+y)[(2x)^2-(2x)(y)+(y)^2][/tex]
[tex](2x)^3+(y)^3=(2x+y)(4x^2-2xy+y^2)[/tex]
Hence, the required product should be [tex](2x)^3+(y)^3=(2x+y)(4x^2-2xy+y^2)[/tex]