Respuesta :

Answer:

[tex]sin(x+\frac{\pi}{2})=cos(x)[/tex]

[tex]cos(x-\frac{\pi}{2})=sin(x)[/tex]

Step-by-step explanation:

* Lets explain how to solve the problem

- We can write a sine as a cosine by translate the sine function to the

 left by [tex]\frac{\pi}{2}[/tex]

- [tex]sin(x+\frac{\pi}{2})=cos(x)[/tex]

∵ The value of sin(0 + π/2) = 1

∵ cos(0) = 1

∴ sin(0 + π/2) = cos(0)

∴ If sin(x) translated to the left by [tex]\frac{\pi}{2}[/tex], then it will be

  cos(x)

∴ [tex]sin(x+\frac{\pi}{2})=cos(x)[/tex]

- Vice versa

- We can write a cosine as a sine by translate the cosine function to

 the right by [tex]\frac{\pi}{2}[/tex]

- [tex]cos(x-\frac{\pi}{2})=sin(x)[/tex]

∵ The value of cos(0 - π/2) = 0

∵ sin(0) = 0

∴ cos(0 - π/2) = sin(0)

∴ If cos(x) translated to the right by [tex]\frac{\pi}{2}[/tex], then it will be

  sin(x)

∴ [tex]cos(x-\frac{\pi}{2})=sin(x))[/tex]

- Look to the attached graphs for more understand

Ver imagen Ashraf82
Ver imagen Ashraf82