Respuesta :

Answer:

(x-2)^2+(y-1)^2=13

Step-by-step explanation:

Center of the circle: (2,1)

Radius: sqrt(13)

(x-2)^2+(y-1)^2=13

The equation of the circle is [tex](x-2)^{2} +(y-1)^{2} = 13[/tex].

What is a circle?

A circle is a collection of all points in a plane which are at a constant distance from a fixed point. A circle is a round-shaped figure that has no corners or edges.

For the given situation,

The endpoints of the diameter of a circle are P = (x1,y1) is (-1,-1) and Q =  (x2,y2) is (5,3).

The general form of equation of the circle is

[tex](x-h)^{2} +(y-k)^{2} =r^{2}[/tex],

where (h,k) is the center of the circle and r is the radius of the circle.

Diameter of the circle can be found using the distance formula,

[tex]d=\sqrt{(x2-x1)^{2}+(y2-y1)^{2} }[/tex]

⇒ [tex]d=\sqrt{(5-(-1))^{2}+(3-(-1))^{2} }[/tex]

⇒ [tex]d=\sqrt{(5+1)^{2}+(3+1)^{2} }[/tex]

⇒ [tex]d=\sqrt{(6)^{2}+(4)^{2} }[/tex]

⇒ [tex]d=\sqrt{36+16 }[/tex]

⇒ [tex]d=\sqrt{52}[/tex]

⇒ [tex]d=7.2111[/tex] ≈ [tex]7.2[/tex]

Radius,r = [tex]\frac{diameter}{2}[/tex]

⇒ [tex]r=\frac{7.2}{2}[/tex]

⇒ [tex]r=3.6[/tex]

The center of the circle can be found by using the mid point formula,

[tex](h,k)=(\frac{x1+x2}{2} ,\frac{y1+y2}{2} )[/tex]

⇒ [tex](h,k)=(\frac{-1+5}{2} ,\frac{-1+3}{2} )[/tex]

⇒ [tex](h,k)=(\frac{4}{2} ,\frac{2}{2} )[/tex]

⇒ [tex](h,k)=(2,1)[/tex]

Thus the equation of circle becomes,

⇒ [tex](x-2)^{2} +(y-1)^{2} =3.6^{2}[/tex]

⇒ [tex](x-2)^{2} +(y-1)^{2} = 12.97[/tex]

⇒ [tex](x-2)^{2} +(y-1)^{2} = 13[/tex]

Hence we can conclude that the equation of the circle is [tex](x-2)^{2} +(y-1)^{2} = 13[/tex].

Learn more about circles here

https://brainly.com/question/288019

#SPJ2